
A Self-supervised Riemannian GNN
with Time Varying Curvature for Temporal Graph Learning

Li Sun1, Junda Ye2, Hao Peng3, Philip S. Yu4
1School of Control and Computer Engineering, North China Electric Power University

2School of Computer Science, Beijing University of Posts and Telecommunications
3Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University

4Department of Computer Science, University of Illinois at Chicago
ccesunli@ncepu.edu.cn,jundaye@bupt.edu.cn,penghao@act.buaa.edu.cn,psyu@uic.edu

ABSTRACT

Representation learning on temporal graphs has drawn consider-
able research attention owing to its fundamental importance in
a wide spectrum of real-world applications. Though a number of
studies succeed in obtaining time-dependent representations, it
still faces significant challenges. On the one hand, most of the
existing methods restrict the embedding space with a certain cur-
vature. However, the underlying geometry in fact shifts among
the positive curvature hyperspherical, zero curvature Euclidean
and negative curvature hyperbolic spaces in the evolvement over
time. On the other hand, these methods usually require abundant
labels to learn temporal representations, and thereby notably limit
their wide use in the unlabeled graphs of the real applications. To
bridge this gap, we make the first attempt to study the problem of
self-supervised temporal graph representation learning in the general
Riemannian space, supporting the time-varying curvature to shift
among hyperspherical, Euclidean and hyperbolic spaces. In this
paper, we present a novel self-supervised Riemannian graph neural
network (SelfRGNN). Specifically, we design a curvature-varying
Riemannian GNNwith a theoretically grounded time encoding, and
formulate a functional curvature over time to model the evolvement
shifting among the positive, zero and negative curvature spaces. To
enable the self-supervised learning, we propose a novel reweighting
self-contrastive approach, exploring the Riemannian space itself
without augmentation, and propose an edge-based self-supervised
curvature learning with the Ricci curvature. Extensive experiments
show the superiority of SelfRGNN, and moreover, the case study
shows the time-varying curvature of temporal graph in reality.

CCS CONCEPTS

• Computing methodologies→Unsupervised learning;Neu-
ral networks; • Information systems→ Data mining.

KEYWORDS

Temporal Graphs, Riemannian Geometry, Contrastive Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557222

ACM Reference Format:

Li Sun1, Junda Ye2, Hao Peng3, Philip S. Yu4. 2022. A Self-supervised Rie-
mannian GNN with Time Varying Curvature for Temporal Graph Learning.
In Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3511808.3557222

1 INTRODUCTION

Graph representation learning is now becoming the de facto stan-
dard when dealing with the ubiquitous graph data [11, 30, 40]. In
the literature, the vast majority of graph representation learning
methods [17, 43, 52] consider the static setting with the structure
of graphs frozen in time. In reality, an abundance of graphs are
temporal in nature and constantly evolving over time, referred to as
temporal graphs. For instance, new interactions (edges) constantly
arrive and the structure of graph changes in social networks, ci-
tation networks, e-commerce networks and the World Wide Web
[51, 53]. Naive application of the static methods on temporal graphs
fails to capture the temporal information, and ignoring the tem-
poral information usually leads to questionable inference [10, 47].
Thus, the representation learning on temporal graphs has drawn
increasing attention in recent years [3, 6, 22, 35].

To date, a series of temporal graph representation learning meth-
ods have been designed to output time-dependent representations
[1, 16], which can be roughly divided into two main categories:
discrete-time methods and continuous-time methods. The discrete-
time methods frame the temporal graphs into a sequence of snap-
shots, and recurrent architectures are frequently employed [10, 29].
A major drawback of discrete-time methods is that the appropriate
granularity for temporal discretization is often subtle. In contrast,
the continuous-time methods [42, 45, 47], which directly integrate
temporal information into the representation learning, are able to
model the temporal graphs with a finer granularity. Despite the
success of prior works, representation learning on temporal graphs
still faces significant challenges.

Challenge 1: Embedding Space Supporting Time-varying Cur-
vature. To the best of our knowledge, existing studies restrict the
embedding space in a Riemannian space of certain curvature. In the
literature, the vast majority of temporal graph models [10, 29, 42,
45, 47] work with traditional zero-curvature Euclidean space, and it
is not until very recently a few graph neural networks [39, 48] for
temporal graphs are proposed in the negative-curvature hyperbolic
space. In fact, rather than restricted in a certain curvature, the cur-
vature of the underlying space varies as the temporal graph evolves

https://doi.org/10.1145/3511808.3557222
https://doi.org/10.1145/3511808.3557222

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Anonymous Author(s)

over time [18, 33]. Even more challenging, the time-varying curva-
ture actually shifts among the positive-curvature hyperspherical,
zero-curvature Euclidean and negative-curvature hyperbolic spaces
in the evolvement over time [28]. Therefore, it calls for a promis-
ing approach in the general Riemannian space with time-varying
curvature to model the evolvement shifting among the Riemannian
spaces of various curvatures.

Challenge 2: Self-supervised Learning for Temporal graph in Rie-
mannian space. Most of the learning methods [19, 29, 39, 45, 48]
require abundant labels to learn the time-dependent representations.
Labels are usually scarce in real applications, and undoubtedly, la-
beling graphs is expensive, either manual annotation or paying for
permission, and is even impossible to acquire because of the privacy
policy. Hence, representation learning on temporal graphs without
labels is more preferable, and fortunately, self-supervised learning
[5, 21] has recently emerged as a principled way by exploring the
similarity of data themselves without external annotations. In the
literature, though the self-supervised learning for static graphs is
being extensively studied [12, 32, 44], the effort for temporal graph
is still limited. Recently, Tian et al. [41] propose a self-supervised
learning method for temporal graph in the traditional Euclidean
space. However, it cannot be applied to the general Riemannian
space owing to essential distinction in geometry. That is, to the best
of our knowledge, self-supervised learning for temporal graphs still
remains open, especially for the general Riemannian space with
time-varying curvature.

To address the aforementioned challenges, we propose to study
the problem of self-supervised temporal graph representation learn-
ing in the general Riemannian space for the first time so as to learn
temporal representations modeling the graph evolvement over Rie-
mannian spaces of various curvatures without external guidance.

In this paper, we propose a novel Self-supervised Riemannian
Graph Neural Network, referred to SelfRGNN, for the represen-
tation learning on temporal graphs. The evolvement of temporal
graph is naturally described as the time-varying curvature of the
embedding space in the language of Riemannian geometry. Conse-
quently, we first propose a curvature-varying Riemannian graph
neural network, in which we formulate a time encoding of arbitrary
curvature to capture the temporal information, and further prove
that the encoding function is translation invariant in time. Then, we
formulate a functional curvature over time to model the temporal
evolvement over Riemannian spaces of various curvatures from
hyperspherical to Euclidean and hyperbolic spaces. To enable its
self-supervised learning, we propose a Riemannian reweighted self-
contrastive approach to learn temporal representations in the ab-
sence of labels. Specifically, we introduce a novel self-augmentation
underpinned by the functional curvature to get rid of introducing
new graphs, and formulate a reweighted contrastive objective that
reweights the negative samples without sampling bias. In addition,
we propose an edge-based self-supervised curvature learning with
the well-defined Ricci curvature, completing the self-supervised
learning of SelfRGNN.
Contributions. Noteworthy contributions are summarized below:

• Problem. To the best of our knowledge, we make the first
attempt on formulating the representation learning prob-
lem for temporal graphs in the general Riemannian space,

supporting time-varying curvature to shift among hyper-
spherical, Euclidean and hyperbolic spaces in the evolvement
over time.
• Methodology. We propose the novel SelfRGNN, in which
the curvature-varying Riemannian GNN and its functional
curvature over time are designed to model the evolvement
in the general Riemannian space of various curvatures, and
the Riemannian reweighting self-contrastive approach is
proposed to enable its self-supervised learning.
• Experiments. Extensive experiments on real-world datasets
show that SelfRGNN even outperforms the state-of-the-
arts supervised methods, and the case study shows the time-
varying curvature of temporal graph in reality.

2 PRELIMINARIES AND PROBLEM

In this section, we first introduce the fundamentals of Riemannian
geometry and the notation of curvature, and then formulate the
problem of temporal graph learning in general Riemannian Space.

2.1 Preliminaries

RiemannianGeometry. It provides an elegantmathematical frame-
work to study the geometry beyond Euclid. The fundamental object
in Riemannian geometry is a smooth manifold M, which gener-
alizes the notion of the surface to higher dimensions. Each point
x ∈ M associates with a tangent space TxM, the first order approx-
imation ofM around x . On the tangent space of x , the Riemannian
metric, дx (·, ·) : TxM × TxM → R, defines an inner product so
that geometric notions can be induced. A Riemannian manifold is
then defined on the smooth manifold paired with a Riemannian
metric, denoted as the tuple (M,д). The length of the shortest walk
connecting two pointsx,y on the Riemannianmanifold is called (ge-
odesic) distance dM (x,y). Refer to mathematical materials [31, 36]
for in-depth expositions.
Curvature on the Manifold. In Riemannian geometry, the con-
stant curvature κ is the notion to measure how a smooth manifold
deviates from being flat. There are three canonical types of con-
stant curvature space that we can define with respect to its sign:
the positively curved hyperspherical space S (κ > 0), the negatively
curved hyperbolic space H (κ < 0), and the flat Euclidean space E
(κ = 0), which is regarded as a special case.
Ricci Curvature. More specifically, for a point x on the manifold,
and for each pair of linearly independent vectorsv and u in TxM,
the sectional curvature at x is defined on the surface spanned by the
exponential map ofv and u, encoding the local geometry around x .
Given a tangent vectorv at x , if we average the sectional curvatures
at x over a set of orthonormal vectors, we obtain the Ricci curvature,
fromwhich the constant curvature κ of the Riemannian space can be
induced [31]. In this paper, we leverage the coarse Ricci curvature
[27] to provide supervision signal for the proposed model.

2.2 Problem Formulation

In this paper, we consider the temporal graph that evolves over
time, and utilize the interactions with temporal information (times-
tamped edges) to model the temporal graphs with fine granularity.

Definition 1 (Temporal Graph). A temporal graph, denoted
as the tuple G = (V, E,X ,T), is defined on a set of nodes V =
{v1,v2, · · · ,vN }, a set of timestamped edges E = {(vi ,vj , tl)}, a

A Self-supervised Riemannian GNN
with Time Varying Curvature for Temporal Graph Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

t2

t1

Riemannian
Reweighted

Contrastive Learning

Riemannian
Self-augmentation

Temporal Aggregation

Temporal AggregationG(t1)

G(t2)

Fu
nc

tio
na

l
C

ur
va

tu
re

Ri
em

an
ni

an

Ti
m

e
En

co
di

ng

Ri
em

an
ni

an

Ti
m

e
En

co
di

ng

Curvature-Varying Riemannian GNN Self-supervised LearningTemporal Graph G

Figure 1: Overall architecture of SelfRGNN.Wefirst design a curvature-varyingRGNNshifting among theRiemannian spaces

of various curvatures, e.g., positive hyperspherical (orange) and negative hyperbolic (blue) spaces, and then enable its self-

supervised learning with the self-augmentation and reweighted contrastive objective without introducing new graphs.

time domainT and a feature matrixX ∈ RN×F . The number of nodes
is |V|, and each nodevi is associated with a feature vector recorded in
the corresponding row inX , denoted as xi ∈ RF . A timestamped edge
(vi ,vj , tl) describes the temporal interaction between nodes vi ∈ V
and vj ∈ V at time tl ∈ T .

In temporal graphs, for a given node, the members of its neigh-
borhood is time-dependent with the new arrival of edges, which is
different from that of the static setting in essence. Hence, we define
the neighborhood in temporal graphs as temporal neighborhood,
and give the formal definition as follows:

Definition 2 (Temporal Neighborhood). Given a time point
t , a temporal neighborhood of vi , denoted as Nt (vi), is defined as a
collection of the nodes linking to vi with the elder timestamps, i.e.,
Nt (vi) = {vj | (vi ,vj , tl) ∈ E ∧ ti j ≤ t}.

With the preliminaries on Riemannian geometry and definitions
above, we formulate the studied problem as follows:

Problem Definition (Self-supervised Temporal Graph Rep-
resentation Learning in the General Riemannian Space).
Given a temporal graph G = (V, E,X ,T), the problem is to find
an encoding function Φ : V →Md ,κ so that, for each node vi , we
can infer the representation hi (t) at time t in the general Riemannian
space with time-varying curvature without any external guidance,
encoding the evolvement of the temporal graph over time.

In other words, we are interested in designing a novel encoding
function for temporal graphs that i) can model the graph evolve-
ment shifting among the positive-curvature hyperspherical, zero-
curvature Euclidean and negative-curvature hyperbolic spaces over
time, and ii) is endowed with the self-supervised learning ability.

3 METHODOLOGY

In this section, we propose a novel Self-supervised Riemannian
Graph Neural Network (SelfRGNN) for the temporal graph learn-
ing in the general Riemannian space with time-varying curvature.
We illustrate the overall architecture of SelfRGNN in Figure 2. As
sketched in Figure 2, we first design a curvature-varying Riemann-
ian graph neural network, modeling the evolvement shifting among
the Riemannian spaces of various curvatures over time, and then

propose a novel Riemannian self-supervised learning approach,
obtaining temporal representations in the absence of external guid-
ance. Next, we will elaborate on each component in the following
subsections, respectively.

First of all, we introduce the Riemannian manifolds we use in
this paper before we construct SelfRGNN on them.
Riemannian manifolds: We opt for the hyperboloid (Lorentz)
model for hyperbolic space and the corresponding hypersphere
model for hyperspherical space with the unified formalism, ow-
ing to the numerical stability and closed form expressions [4, 50].
Specifically, we have a d-dimensional manifold of curvature κ,

Md ,κ =

Sd ,κ = {x ∈ Rd+1 : ⟨x,x⟩2 = 1

κ } for κ > 0,
Ed = {x ∈ Rd } for κ = 0,
Hd ,κ = {x ∈ Rd+1 : ⟨x,x⟩L = 1

κ } for κ < 0,
(1)

where ⟨·, ·⟩2 and ⟨·, ·⟩L denote the standard inner product and
Minkowski inner product onRd+1, respectively, and theMinkowski
inner product is defined as

⟨x,y⟩L = x⊤ diag(−1, 1, · · · , 1)y. (2)

The origin of the manifold (
√

1
|κ | , 0, · · · , 0) is denoted as O ∈ M

d ,κ .

3.1 Curvature-varying Riemannian GNN

We propose a novel curvature-aware Riemannian GNN (RGNN)
with a theoretically grounded time encoding to define the encoding
functionΦ above, in whichwe formulate a functional curvature over
time to model temporal evolvement shifting among Riemannian
spaces of various curvatures (positive, zero and negative). This
novel idea distinguishes us with the vast majority of existing studies
that restrict the embedding space in a Riemannian space of certain
curvature with an inductive bias given in prior.

3.1.1 Time Encoding of Arbitrary Curvature. Interaction time be-
tween nodes (timestamps) records the graph evolvement specifi-
cally. To tackle with timestamps, we propose a novel time encoding
function of arbitrary curvature φκ : t → tκ ∈ Md ,κ which maps a
time point t ∈ T to a vector tκ in Riemannian space of curvature κ,
so that the temporal information is transformed as a Riemannian

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Anonymous Author(s)

Table 1: Summary of the operations with unified formalism.

Operation Unified formalism inMd ,κ

Distance Metric dM (x,y) =
1√
|κ |

cos−1
κ (|κ |⟨x,y⟩κ)

Scalar Multiplication r ⊗κ x = expκ
O

(
r loдκ

O
(x)

)
Matrix Multiplication M ⊗κ x = expκ

O

(
M loдκ

O
(x)

)
Applying Functions f ⊗κ (x) = expκ

O

(
f

(
loдκ
O
(x)

))
feature compatible with the graph convolution. We begin the elab-
oration with the simple and special case, Euclidean time encoding.
Euclidean Time Encoding. In a nutshell, the Euclidean time en-
coding defines a generic function φ0 : t → t0, where t ∈ T and
t0 ∈ Rd . Stemming from the design of random Fourier features, a
Bochner-type (trigonometric) encoding function can be derived as

φ0(t) =

√
1
d
[cos (ω1t) , sin (ω1t) , . . . , cos (ωd t) , sin (ωd t)] , (3)

parameterized by the ω’s [47]. According to the Bochner’s Theo-
rem, the encoding function is translation-invariant in time. Specif-
ically, there exists a function ψ E (·) on R so that the induced ker-
nel KE (ti , tj) = ⟨φ

0(ti),φ0(tj)⟩2 can be expressed as KE (ti , tj) =

ψ E (ti − tj), i.e., we have the following equation holds for any t0,

KE (ti , tj) = K
E (t0 − ti , t0 − tj) = ψ

E (ti − tj). (4)
Riemannian Time Encoding. Based on the Euclidean encoding
above, we formulate a Riemannian time encoding of arbitrary cur-
vature with the aid of exponential map, and further prove that the
translation invariant property also holds for the proposed formulation.

Proposition 1 (Exponential and Logarithmic Maps). For
the points on the manifold of curvature κ, x,y ∈ Md ,κ , and v in
the tangent space of x , v ∈ TxMd ,κ , such that x , y and v , 0,
the exponential map expx (v) : TxMd ,κ →Md ,κ at x projects the
vectorv of its tangent space onto the manifoldMd ,κ ,

expκx (v) = cosκ
(√
|κ |∥v ∥κ

)
x + sinκ

(√
|κ |∥v ∥κ

)
v√
|κ |∥v ∥κ

.

The logarithmic map loдκx (y) : Md ,κ → TxM
d ,κ at x projects the

vector y ∈ M back to the tangent space TxMd ,κ ,

loдκx (y) =
cos−1

κ (κ⟨x,y⟩κ)

sinκ
(
cos−1

κ (κ⟨x,y⟩κ)
) (y − κ⟨x,y⟩κx)

Remarks: We summarize all the necessary operations for this paper
in Table 1 with the curvature-aware definition of trigonometrics,
e.g., cosκ (·) = cosh(·) if κ < 0 and cosκ (·) = cos(·) if κ > 0.

We derive the Riemannian time encoding of arbitrary curvature
as follows. Specifically, we first augment t0 as t̄0 = [0| |t0], where
[·| |·] denotes the concatenation of vectors, and it is easy to check
that the augmented encoding resides in the tangent space of the
origin O of the Riemannian manifold, i.e., ⟨O, t̄0⟩κ = 0 holds for
any t0. Then, we project the tangent vector t̄0 via the exponential
map at the origin expκ

O
(·) to obtain tκ at Riemannian manifold of

curvature κ, yielding the Riemannian time encoding as follows:

tκ =

cosκ

(√
|κ |∥t̄0∥κ

)
√
|κ |

,
sinκ

(√
|κ |∥t̄0∥κ

)
√
|κ |∥t̄0∥κ

t0
 , (5)

where t0 is the Euclidean encoding. ∥t̄0∥κ =
√
⟨[0, t0], [0, t0]⟩L =

∥t0∥2 when κ < 0, while ∥t̄0∥κ =
√
⟨[0, t0], [0, t0]⟩2 = ∥t0∥2 when

κ > 0. Note that, ∥t̄0∥κ = ∥t0∥2 = 1. Therefore, we give the unified
formulation of the time encoding function as follows

φκ (t) =

cosκ

(√
|κ |

)
√
|κ |

,
sinκ

(√
|κ |

)
√
|κ |

φ0 (t)

 , (6)

for any t ∈ T , where φ0 (·) is defined in Eq. (3).
Moreover, we prove that the Riemannian time encoding is trans-

lation invariant in time as its Euclidean counterpart.

Proposition 2 (Translation Invariant Property of Rie-
mannian Time Encoding). Given the Riemannian time encoding of
arbitrary curvatureφκ (·), the induced Riemannian kernelKR (ti , tj) =
⟨φκ (ti),φ

κ (tj)⟩κ is translation invariant over time in domain T , i.e,
there exists a functionψR (·) so that

KR (ti , tj) = ψ
R (ti − tj).

Proof. We provide the idea and key equations only due to the
limit of space. We prove the translation invariant property of the
induced Riemannian kernel by proving the existence of the function
ψR (·) regardless of the sign of κ. Specifically, we have
KR (ti , tj) = ⟨t

κ
i , t

κ
j ⟩κ

= −

(
sinκ

(√
|κ |

))2

|κ |
⟨t0
i , t

0
j ⟩κ +

(
cosκ

(√
|κ |

))2

|κ |

= −

(
sinκ

(√
|κ |

))2

|κ |
KE (ti , tj) +

(
cosκ

(√
|κ |

))2

|κ |

= ψR (ti − tj),

(7)

and ψR = д ◦ ψ E . That is, for arbitrary κ, we have KR (ti , tj) =

ψR (ti − tj) andψR = д ◦ψ E , where д(x) = Ax + B,

A =

(
sinκ

(√
|κ |

))2

|κ |
, B =

(
cosκ

(√
|κ |

))2

|κ |
. (8)

□
3.1.2 Riemannian Temporal Attention Layer. We propose a Rie-
mannian temporal attention layer, which is the building block layer
of RGNN to update temporal representations hi (t) in the general
Riemannian space. As opposed to static graph convolution receiv-
ing messages of all members in the neighborhood, we conduct
temporal aggregation on the temporal neighbors (Definition 2)
Nt (vi) at time t in the following two steps.
Step One.We build the temporal message with the stereographic pro-
jection in the Riemannian manifold. For a neighbor nodevj linked at
time tl , its temporal message is built by the representation of nodes
vj and time encoding φκ (tl) in the Riemannian manifold. However,
operating vectors in the Riemannian manifold is nontrivial, and
concatenation is generally illegal in the Riemannian manifold. For-
tunately, addition is well-defined in the gyrovector spaces ⊕G with
the elegant non-associative algebraic formalism:

x ⊕G y =

(
1 − 2κxTy − κ∥y∥2

)
x +

(
1 + κ∥x ∥2

)
y

1 − 2κxTy + κ2∥x ∥2∥y∥2
. (9)

The mappings between the gyrovector space and the Riemannian
manifold of Eq. (1) is done via the stereographic projection SP(·)
and its inverse as follows:

A Self-supervised Riemannian GNN
with Time Varying Curvature for Temporal Graph Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

SP(x) =
1

1 +
√
κx[1]

x[2:d+1], SP
−1(x ′) =

[
1
√
κ

(
λκx ′ − 1

)
, λκx x

′

]
,

(10)
where λκx = 2

1+κ ∥x ∥22
, and x ′ is the corresponding point of x in

the gyrovector space. Thus, we have the addition in the general
Riemannian manifold as follows:

x ⊕κ y = SP−1 (SP (x) ⊕G SP (y)) , (11)
and formulate the temporal message from vj as follows:

mj (t) = (W1 ⊗κ hj (t)) ⊕κ (W2 ⊗κ φ
κ (tl)), (12)

whereW1 andW2 are parameter matrices. Owing to the translation
invariant with respect to time, we alternatively set t̄l = t − tl in
practice as KR (t̄i , t̄2) = KR (t1, t2) for any t1, t2 in the time domain.
Step Two.We perform the aggregation with the attention mechanism
in the Riemannian space. As the importance of neighbor nodes
is usually different, we introduce the attentional aggregation in
account of the importance of different neighbors. Specifically, we
first lift the Riemannian temporal message to the tangent space via
logarithmic map loдκ

O
and model the importance parameterized by

θ andW3 as follows:
ATTκ (mi (t),mj (t)) = σ

(
θ⊤

[
W3loд

κ
O
(mi (t)),W3loд

κ
O
(mj (t))

])
,

(13)
where σ (·) denotes the sigmoid activation. Then, we compute the
attention weight over the temporal neighborhood via softmax:

αi j = eATT
κ (mi (t),mj (t))/

∑
vn ∈Ni (t)

eATT
κ (mi (t),mn (t)). (14)

Finally, we update hi (t) by performing the attentional aggregation
with the aid of the tangent space, i.e.,

AGGκ (
{mj (t)}

)
= δ ⊗κ

(
expκ

hi (t)

(∑
j ∈Nt (vi)

αi j loд
κ
hi (t)

(
mj (t)

)))
,

(15)
where δ is the applied nonlinearity in the Riemannian space.

3.1.3 Functional Curvature in General Riemannian Space. We pro-
pose a novel functional curvature over time, a key ingredient of our
RGNN. In this way, we can model the evolvement shifting among
the Riemannian space of various curvatures over time, and distin-
guishes us against the studies restricting in a certain curvature with
the inductive bias given in prior.

In the Riemannian geometry, the evolvement of temporal graph
is naturally described as the time-varying curvature of the embed-
ding space. Specifically, we need to figure out a curvature function
over time f : t → κ. In practice, we first perform φ0(t) to obtain a
time encoding t0, and then feed the encoding vector into a neural
network, CurNN. The CurNN is built with an MLP followed by a
bilinear output layer to obtain the constant curvature of any sign,

CurNN (t) = MLP
(
φ0(t)

)⊤
W4MLP

(
φ0(t)

)
. (16)

With the functional curvature in Eq. (16), RGNN is able model the
graph evolvement shifting among hyperspherical, Euclidean and
hyperbolic spaces over time.

3.2 Riemannian Self-supervised Learning

To enable the self-supervised learning, we propose a novel Rie-
mannian self-supervised learning approach. The novelty lies in that
we explore the rich information in the Riemannian space of the
temporal graph itself, getting rid of the effort for data augmentation.

The self-supervised learning tasks are dual, i.e., the temporal repre-
sentation and the curvature of the Riemannian Space. To this end,
we propose a Riemannian reweighted self-contrastive learning and
an edge-based self-supervised curvature learning for the temporal
graph, respectively.
3.2.1 Reweighted Self-Contrastive Learning in the Riemannian Space.
Contrastive learning explores the semantic similarity of data them-
selves, and learn the representations by contrasting positive and
negative samples [34, 41]. Consider that a latent semantic class
c ∈ C is assigned to each observation x over X via h : X → C.
Given an observation x , if x ′ and x share the same semantic class,
x ′ is said to be a positive sample whose conditional distribution is
given as p+ (x ′) = p (x ′ | h (x ′) = h(x)), while a negative sample is
drawn fromp− (x ′) = p (x ′ | h (x ′) , h(x)). We cannot access to the
sampling distributions p+ and p− in practice. The main ingredients
of a contrastive learning framework are: i) proxies of p+ of a given
nodevi , and ii) a loss function discriminating positive and negative
samples. Unfortunately, both of them are challenging in the context
of temporal graphs.
Riemannian Self-augmentation. For the first challenge (obtain-
ing p+), data augmentation is usually performed and thereby dif-
ferent views are constructed for contrast. In computer vision, the
augmentation can be easily given by semantic preserving transfor-
mations, e.g., cropping and rotating [5]. However, the analog is not
obvious for graphs, and the study [12] shows that different augmen-
tations (i.e., node dropping, edge perturbation) behave differently
according to the distributions of the underlying graphs.

To address this challenge, we propose a novel Riemannian self-
augmentation, which leverages the functional curvature to augment
auxiliary views. In this way, we obtain p+ without introducing a
new graph, instead of struggling in defining augmented graphs as
prior works [12, 32, 44]. Specifically, given the α view at time t1,
the proposed self-augmentation aims to generate its β view for the
contrastive learning. The temporal representations of α view are
obtained via RGNN. Alternatively, we can employ another time
point t2 as a reference and infer the temporal representations of β
view at t1 based on corresponding curvatures. Thanks to the pro-
posed functional curvature over time, we can obtain the curvatures
in the evolvement of temporal graph via Eq. (16), and generate the
β view with a Riemannian projection as follows:

RiemannianProjt2→t1 (·) = exp
CurNN (t1)
O

(
loд

CurNN (t2)
O

(·)

)
.

(17)
RiemannianReweighting. For the second challenge (constrastive
loss), different formulations of constrastive loss are proposed. How-
ever, in practice, the ideal negative sampling distribution p− is
replaced by the data distribution p(x) over X (sampling bias), since
labels cannot be accessed in the self-supervised learning. Addition-
ally, the “negative” samples behave uniformly in the constrastive
objective (hardness unawareness). The phenomena are formalized in
Robinson et al. [34], however, its solution cannot be applied in the
Riemannian space owing to the essential distinction in geometry.

To bridge this gap, we propose a novel Riemannian reweight-
ing contrastive loss to i) get rid of the sampling bias as well as ii)
select negative samples in account of the hardness. Specifically,
we first confront the bias incurred by the absence of ideal p−
with tractable distributions. We decompose the data distribution as
p (x ′) = τ+p+ (x ′) + τ−p− (x ′), where τ+ = p(h(x ′) = h(x)) is the

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Anonymous Author(s)

Algorithm 1: The Self-supervised Learning of SelfRGNN
Input: A temporal graph G = (V, E,X ,T), weighting

coefficientw .
Output: The parameters of SelfRGNN.
while not converging do

// The α view:
Estimate curvature at the time t1 via Eqs. (3) and (16);
h(t1) ← CurvatureVaryinдRGNN at t1;
h(t)α ← h(t1) ;
// The β view from Riemannian self-augmentation:
Estimate curvature at the time t2 via Eqs. (3) and (16);
h(t2) ← CurvatureVaryinдRGNN at t2;
h(t)β ← RiemannianProjt2→t1 (h(t2)) ;
// Riemannian self-supervised learning objective:
for temporal representations in α and β views do

Contrast via the score function in Eq. (20);
Calculate Riemannian reweighting contrastive loss
L(α ,β) and L(β ,α) via Eqs. (23)-(25);

κ̂ ← GRU ([κi j | |t0
j]) ;

// Update neural network parameters:
Calculate the gradients of the overall objective:

∇ (Lcontrast +wLcurvature) .

class prior of x ’s semantic class and can be estimated from data in
practice [14], and thus p− is yielded as

p−
(
x ′

)
=

(
p

(
x ′

)
− τ+p+

(
x ′

))
/τ−, (18)

with two tractable distributions. Note that we have samples from
p and p+ is given via the self-augmentation above. Second, we
introduce a probability q−ξ in Riemannian space to select negative
samples. A hard negative sample is an x− whose semantic class is
different from the x but the representation is similar to x , and thus
q−ξ (x

−) = qξ (x
− | h(x) , h (x−)) is defined as

qξ (x
−) ∝ eξ sM (x ,x

−) · p (x−) , (19)
where sM is a score function to output the similarity, and ξ > 0
is the parameter to upweight the hardness. The intuition is that
a hard negative with similar representation in Riemannian space
has a larger probability of getting sampled. With the prior of p, the
negative sampling is essentially reweighted by the likelihood of an
exponential term, which is the Bayesian interpretation of Eq. (19).

Obviously, it further requires a score function to contrast be-
tween positive and negative samples. Defining the score function
is nontrivial as the existing Euclidean functions cannot be used in
the Riemannian space, and temporal information needs to be con-
sidered for representation learning on temporal graphs. Thanks to
the translation invariant property of the proposed time encoding of
arbitrary curvature, we propose a novel score function as follows:

sM (hi (t),hi (t)) = K(ti , tj)dM (hi (t),hi (t)) , (20)
which means that the samples are discriminated by the distance in
the manifold penalized by the relative relationship in time domain.

3.2.2 Edge-based Self-supervised Curvature Learning. We propose
to utilize the Ricci curvature on the edges to supervise the func-
tional curvature of the graph. The (coarse) Ricci curvature κi j on

edge (vi ,vj) is defined by comparing the Wasserstein distance
W (mλ

i ,m
λ
j) to the geodesic distance dM (hi (t),hj (t)) on the mani-

fold [27], wheremα
i is a probability measure around node vi , i.e.,

κi j = 1 −W (mλ
i ,m

λ
j)/dM (hi (t),hj (t)). (21)

Given a node vi with the temporal neighborhood Nt (vi), the prob-
ability measuremλ

i is defined as

mλ
i (v) =

{
λ if v = vi
(1 − λ)/K if v ∈ Nt (vi),

(22)

and otherwise,mλ
i (v) = 0, where K is the number of the nodes in

the neighborhood, and α is the parameter to keep probability mass
of α at node vi itself, which is set to 0.5 in practice according to
the study of Ye et al. [49]. For a given time point t , the curvature of
the graph is induced from the Ricci curvatures [31], and we employ
a GRU to mimic the mapping. Concretely, we first pair the Ricci
curvature of an edge κi j with its time encoding t0

j to incorporate
the temporal information. Then, we feed the augmented [κi j | |t0

j]

into the GRU unit in chronological order, whose output layer is
replaced by a bilinear one to obtain the graph curvature κ̂ of any
sign. κ̂ is presented as the supervision signal to the graph curvature
κ given by function ofCurNN (t), and thus we have the objective of
self-supervised curvature learning, i.e., Lcurvature =

∑
t |κ − κ̂ |.

3.2.3 Self-supervised Learning Objective. First, we instantiate the
formulation of Riemannian reweighted self-contrastive learning.
We start with defining L(α ,β) that contrasts with h(t)+β ∼ p

+ and
{hi (t)−β }

N
i=1 ∼ p

− from the self-augmented β view as follows:

Eh(t)α ,h(t)+β

[
sM (h(t)α ,h(t)

+
β) − Ehi (t)−β

[
loд

N∑
i=1

e

(
sM (h(t)α ,hi (t)−β

)]]
,

(23)
and the expectation term of Eh(t)−β is replaced by the Riemannian
reweighting accordingly,

1
τ−Zξ

(
Ehi (t)−β

[
e
sM (h(t)α ,hi (t)−β)

]
−
τ+

Z−ξ
Eh(t)+β

[
e
sM (h(t)α ,h(t)+β)

])
,

(24)
where q+ξ (h(t)

−
β) ∝ e

ξ sM (h(t)α ,h(t)+β)) · p+(h(t)−β), and the factors

Zξ = Ehi (t)−β

[
e
ξ sM (h(t)α ,hi (t)−β)

]
, Z+ξ = Eh(t)+β

[
e
ξ sM (h(t)α ,h(t)+β)

]
,

(25)
are given to normalize the probability mass. Note that, if we set
hardness ξ = 0, the formulation in Eqs. (23)-(25) degenerates into a
typical InfoNCE loss treating the samples uniformly, and in fact it
is easy to check the following proposition holds.

Proposition 3 (Riemannian Reweighting Contrastive Loss).
The proposed formulation in Eqs. (23)-(25) is equivalent to InfoNCE
objective formulated in [13] if class prior is omitted, τ+ = 0.

That is, we generalize the formulation of InfoNCE in the Riemannian
space with reweighting. The α view is contrasted with the β view,
and vice versa. We have Lcontrast = −L(α ,β) − L(β ,α).

Finally, incorporating the objective of curvature learning, we
have the overall objective for Riemannian self-supervised learning,

Lsel f = Lcontrast +wLcurvature , (26)

A Self-supervised Riemannian GNN
with Time Varying Curvature for Temporal Graph Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 2: The summary of AUC (%) for node classification on

Wikipedia, MOOC and Cora datasets. The highest scores are

in bold, and the second underlined.

Model Wiki MOOC Cora

S
u
p
e
r
v
i
s
e
d

E

EvolveGCN 72.33(0.6) 65.35(0.1) 76.10(0.3)
VGRNN 80.15(0.1) 71.02(0.2) 82.05(0.2)
DyRep 79.24(0.2) 72.67(0.0) 82.89(0.1)
TGAT 83.69(0.7) 69.46(0.4) 85.27(0.2)
CAWNet 86.77(0.3) 68.77(0.4) 88.95(0.7)

H
HVGNN 86.22(0.2) 73.90(0.3) 89.48 (0.1)
HTGN 85.08(0.5) 75.12 (0.1) 87.22(1.0)

S
e
l
f

E DDGCL 89.32 (0.5) 74.54(0.2) 87.67(0.3)
SelfRGNN 93.64(0.) 81.28(0.1) 94.06(0.2)
(Gain) +4.32% +6.16% +5.58%

wherew is aweighting coefficient.We summarize the self-supervised
learning of the proposed SelfRGNN in Algorithm 1, whose com-
putational complexity is O(Ne (|E | + Nw |V|)), where Ne and Nw
are the numbers of epochs and reweighted samples, respectively.
Note that, the complexity order of SelfRGNN is same as that of
self-supervised graph methods in Euclidean space [12, 41], but we
support time-varying curvature to model the evolvement shifting
among hyperspherical, Euclidean and hyperbolic spaces over time.

4 EXPERIMENT

In this section, we conduct extensive experiments on a variety of
datasets, aiming to answer the following research questions (RQs):
• RQ1: How does the proposed SelfRGNN perform?
• RQ2: How does each component contributes to the success
of the proposed SelfRGNN?
• RQ3: How does the curvature evolve over time?

4.1 Experimental Setups

4.1.1 Datasets. We conduct extensive experiments on a diverse set
of benchmark temporal graphs including Wikipedia, MOOC and
Social of Xu et al. [47], and Cora and Physics of Hajiramezanali
et al. [10]. We adopt the same chronological data split with 70% for
training, and 15% for validation and testing over all the datasets.

4.1.2 Baselines. To evaluate the performance of SelfRGNN, we
choose several state-of-the-arts baselines. We only consider the
models for temporal graphs as we are interested in the representa-
tion learning on temporal graphs in this study.
Euclidean Model: For the supervised models, we compare with
the strong baselines including VGRNN [10], EvolveGCN [29],
DyRep [42], TGAT [47] and the recent CAWNet [45]. For the
self-supervised model, we includeDDGCL [41], a recent contrastive
learning method for temporal graphs.
Riemannian Model: For the supervised models, we compare with
the recent HTGN [48] and HVGNN [39], and both of them are
in the Riemannian space of negative curvature (hyperbolic space).
The proposed SelfRGNN is the first Riemannian model with time-
varying curvature, to the best of our knowledge. For the self-supervised
model, there is few work in the literature, and we also fill this gap
in SelfRGNN.

4.1.3 Evaluation Tasks. Both node classification and link prediction
are utilized as evaluation tasks.
Node Classification: We evaluate the performance on Wikipedia,
MOOC, and Cora. The node label of Wikipedia and MOOC is given
following the study [41], and the nodes of Cora is given in the
original citation network. The labels are utilized by the supervised
models in both training and testing. In contrast, similar to Veličković
et al. [44], self-supervisedmodels first learn representations without
labels, and then were evaluated by specific learning task, which is
performed by directly using these representations to train and test.
Link Prediction: We evaluate the performance on all the datasets.
In this work, we not only care about the link prediction between the
trained nodes, but also expect the models to predict links between
the new nodes. Hence, we introduce two types of link prediction
tasks: i) Transductive link prediction task allows temporal links
between all nodes to be observed up to a time point during the
training phase, and uses all the remaining links after that time point
for testing. ii) Inductive link prediction task predicts links associated
with at least one node not observed in the training set. We first
conduct the chronological data split as the transductive setting and
then randomly select 10% nodes to determine the edges to remove
following the study [45].

4.1.4 Implementation Details. To enhance the reproducibility, we
provide the implementation details in the subsection.
Euclidean Input: The input feature is Euclidean by default. In
this case, we map input features to the Riemannian space before
feeding into the non-Euclidean models. Specifically, we utilize the
exponential map expκ

O
(·) to perform the mapping from Rd toMd

κ .
The curvature κ can be either set as the parameter of a negative
constant for the hyperbolic model, HVGNN and HGTN, or adopted
the parametric formulation for the proposed SelfRGNN.
SelfRGNN: We stack the proposed temporal aggregation layers
twice in SelfRGNN, and we utilize a two-layerMLP to build CurNN
for curvature learning. The dimensionality of our temporal repre-
sentations is set to 32, while the hyperparameters of the baselines
are set for the best performance according to the original papers.

4.2 Overall Performance (RQ1)
We utilize AUC, area under RoC curve, as the evaluation metric for
the tasks of node classification and link prediction, and report its
mean value with 95% confidence interval of 10 independent runs
for each model to achieve fair comparisons. The confidence interval
are given in the brackets in the tables.

4.2.1 Node Classification. Traditional classifiers work with the
Euclidean space, and cannot be directly applied to the Riemann-
ian space due to the essential distinction in geometry. Thus, we
first discuss the node classification in the Riemannian space. In
this work, following Liu et al. [20], we introduce an output trans-
formation which transforms output representations to Euclidean
encodings. Specifically, given an output hi (t), we first introduce
a set of centroids {µ1, · · · , µC }(t), where µc (t) is the centroid in
Riemannian space learned jointly with the learning model. Then,
encoding of hi (t) is defined as ξi (t) = (ξi1, . . . , ξiC)⊤, where ξi j =
dM (hi (t), µ j (t)), summarizing the position of temporal represen-
tations relative to the centroids. Now, we are ready to use logistic

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Anonymous Author(s)

Table 3: The summary of AUC(%) for inductive link prediction and transductive link prediction on Wiki, MOOC, Cora, Social

and Physics. The highest scores are in bold, and the second underlined. Note, (0.) means that the interval is less than ±0.05%.

Inductive Link Prediction Transductive Link Prediction
Method Wiki MOOC Social Cora Physics Wiki MOOC Social Cora Physics

S
u
p
e
r
v
i
s
e
d

E

EvolveGCN 57.26(1.2) 51.52(2.4) 48.85(1.0) 69.18(0.3) 74.25(1.6) 60.48(0.5) 50.36(0.8) 60.36(0.6) 68.02(0.1) 77.50(1.3)
VGRNN 62.40(0.7) 61.33(0.5) 65.48(0.8) 75.67(0.1) 73.88(1.0) 71.20(0.7) 90.02(0.3) 78.28(0.7) 79.55(0.2) 78.02(1.0)
DyRep 73.39(1.0) 84.23(1.8) 86.44(0.2) 81.30(0.1) 76.05(1.3) 77.40(0.1) 90.49(0.) 90.85(0.) 82.13(0.2) 78.67(0.7)
TGAT 95.20(0.6) 69.33(0.1) 53.79(1.1) 76.92(0.2) 81.46(0.2) 96.36(0.1) 72.09(0.3) 56.63(0.5) 77.36(0.1) 95.12(1.1)
CAWNet 98.24 (0.5) 90.67(0.6) 95.15(0.7) 95.20 (0.5) 95.12(0.1) 99.89(0.) 92.38(0.6) 94.79(0.2) 95.89(0.3) 97.86 (0.7)

H
HVGNN 96.55(0.4) 95.20(0.) 89.12(0.1) 93.04(1.0) 96.02 (0.3) 98.62(0.1) 89.33(0.2) 84.67(0.1) 93.67(0.5) 97.33(0.1)
HTGN 87.17(0.5) 91.48(0.6) 97.33 (0.2) 95.15(0.7) 89.24(0.2) 91.75(0.7) 95.10(1.1) 98.05 (1.0) 96.27 (0.2) 91.67(0.1)

S
e
l
f E DDGCL 98.05(0.1) 96.16 (0.7) 97.08(0.4) 94.89(0.3) 95.70(0.2) 97.92(0.1) 96.92 (0.1) 95.18(0.1) 95.05(0.6) 96.10(0.3)

SelfRGNN 99.16(0.2) 98.12(0.1) 97.80(0.1) 96.36(0.3) 97.99(0.1) 99.67 (0.1) 98.85(0.1) 99.24(0.) 97.68(1.0) 98.05(0.2)

Table 4: Ablation study with node classification in terms of

AUC (%) on Wiki, MOOC and Cora datasets.

Variant Wiki MOOC Cora

S
SelfRGNN+w/oRR 85.18(0.3) 69.24(0.2) 83.60(0.2)
SelfRGNN+ 88.46(0.1) 73.78(0.6) 87.45(1.0)

E
SelfRGNN0w/oRR 83.95(0.1) 70.33(0.2) 84.17(0.5)
SelfRGNN0 88.02(0.5) 75.82(0.2) 87.05(0.3)

H
SelfRGNN−w/oRR 85.60(0.6) 72.50(0.1) 88.33(0.1)
SelfRGNN− 90.82(1.2) 78.16(0.5) 93.89 (0.3)

Va
ry
in
g SelfRGNNw/oRR 89.27(0.3) 77.08(0.3) 91.48(0.1)

SelfRGNN 93.64(0.) 81.28(0.1) 94.06(0.2)
RGNN(Supervised) 92.03 (0.1) 80.89 (0.2) 92.50(1.1)

regression for node classification, and the likelihood is given as

p(y |h(t)) = Siдmoid(w⊤h(t)), (27)

wherew ∈ R |C | is the parameter, and y is the label. Let h(t) = ξ (t)
for non-Euclidean models (i.e., the hyperbolic HVGNN and HGTN,
the proposed SelfRGNN) and h(t) is the output of Euclidean ones.
Note that, the hyperbolic logistic regression proposed in the study
[8] cannot be generalized to the Riemannian space of arbitrary
curvature. We summarize the experimental results in Table 2, and
it is obvious that our SelfRGNN consistently outperforms the
state-of-the-arts supervised methods. The superiority lies in that
SelfRGNN model the temporal evolvement among hyperspherical,
Euclidean, and hyperbolic spaces in reality, and the proposed self-
supervised approach learns temporal representations effectively.

4.2.2 Link Prediction. For link perdition tasks, we utilize the Fermi-
Dirac decoder, a generalization of sigmoid, to compute probability
scores for edges. Formally, given output representations h(t), we
have the probability formulated as follows:

p((vi ,vj) ∈ E| hi (t),hj (t)) =

(
exp

(
dM (hi (t),hj (t))

2 − r

t

)
+ 1

)−1

,

(28)
where r and t are hyperparameters. For each method, dM is the
distance metric of corresponding representation space, e.g., | |hi (t)−
hj (t)| |2 for Euclidean models, and we utilize dM in Table 1 for the

Riemannian models. We report the experimental results of both
inductive link prediction and transductive link prediction in Table
3. The proposed SelfRGNN achieves the best performance on all
the datasets except for one case, the transductive setting on Wiki
against CAWNet, which is a supervised method with a calibrated
inductive bias for interaction prediction.

4.3 Ablation Study (RQ2)
We conduct ablation study to show how each proposed component
contributes to the success of SelfRGNN. To this end, we design
two types of variants as follows:

• The first type of variants is to verify the effectiveness of the
time-varying curvature. We use the superscript to distinguish
the shape of Riemannian space, e.g., SelfRGNN− of the
negative sign denotes the corresponding model work with
the negative curvature hyperbolic space.
• The second type of variants is to verify the effectiveness of
the Riemannian Reweighed contrastive loss. We use the suffix
of w/oRR to denotes the corresponding model trained with
the original InfoNCE loss.

Additionally, we train the curvature-varying RGNN with labels,
referred to as RGNN(Supervised), to show the effectiveness of the
proposed self-supervised approach. That is, we have eight vari-
ants in total, and note that SelfRGNN0 means that the proposed
SelfRGNN degenerates into a special case of Euclidean space. We
utilize node classification as the evaluation task for the ablation
study, and the performance of variants are summarized in Table 4.
We find that: i) The proposed SelfRGNN with time-varying curva-
ture outperforms its variants with a certain curvature, especially
for the zero curvature (Euclidean space). We will further discuss
it in our case study. ii) The performance of the proposed RR loss
beats that of the original InfoNCE loss, and SelfRGNN even obtain
better results than the supervised RGNN, showing the effectiveness
of Riemannian reweighted contrastive loss.

4.4 Case Study and Discussion (RQ3)
In the case study, we show the curvature of the underlying geome-
try evolves over time on Physics [10], a citation network related to
high energy physics from Jan, 1993 to April, 2003. We embed the
network at different time points in the 2-dimensional Riemannian

A Self-supervised Riemannian GNN
with Time Varying Curvature for Temporal Graph Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

(a) The embedding space in May, 1996 (b) The embedding space in May, 1998 (c) The embedding space in May, 2000 (d) The embedding space in May, 2002

Figure 2: Visualization of the embedding spaces over time on Physics datasets.

Table 5: Curvature evolvement on Physics datasets.

Time point May, 1996 May, 1998 May, 2000 May, 2002
Curvature +0.552 +0.303 -0.259 -1.022

spaces, and learn the corresponding curvatures from the data, il-
lustrated in Fig. 3, where the curvature is reported in Table 5. As
shown in our case study, rather than remained in a certain curvature,
the underlying space evolves from positive curvature hyperspherical
to negative curvature hyperbolic space. At the beginning, a number
of paper and citations join in the network forming triangles or
other cyclical structures, which presents a positive curvature of
hyperspherical spaces. As the time progresses, high-impact papers
of high citations acquire a better visibility to receive more citations
than the low-impact ones. Similar phenomenon is also observed in
the study [33]. Correspondingly, the graph presents hierarchical
structure, and thus renders the underlying geometry evolve to be
hyperbolic. That is, the embedding space shifts among the Riemann-
ian space of various curvatures (positive, zero and negative) in the
graph evolvement over time, explaining the inferior of methods
with certain curvature and the superior of the proposed SelfRGNN
with time-varying curvatures.

5 RELATEDWORK

Representation Learning on Temporal Graphs. Representa-
tion learning on temporal graphs [1, 16] consider the represen-
tations to be time-dependent as the graph evolves over time, which
can be roughly divided into two main categories: discrete-time
methods and continuous-time methods. The discrete-time methods
operate on a sequence of snapshots, while the continuous-time
methods directly model the temporal interactions. For the discrete-
time methods, recurrent architectures are frequently employed
capture the time-dependence over snapshots, e.g., VGRNN [10]
and EvolveGCN [29]. For the continuous-time methods, temporal
random walks [23, 25] have shown to be effective, and the recent
CAWNet [45] is based on the causual anonymous walks. Temporal
point process [15, 46, 53] is another important tool, e.g., DyRep [42]
considers an additional hop of interactions for further expressive-
ness. Recently, GNN-based models have also emerged to deal with
continuous time, e.g., TGAT [47] extends GAT [43] to the temporal
graphs. JODIE [19] models the message exchanges with the mutual
RNNs for bipartite graphs specifically. These studies usually rely on
the labels to learn the representations. In fact, the self-supervised

methods are more preferable for the unlabeled graphs of real appli-
cations, but unfortunately, the effort for the self-supervised learning
on temporal graphs is still limited. Recently, DDGCL [41] enables
the self-supervised learning in the traditional Euclidean space as
the prior works do. To the best of our knowledge, none of the exist-
ing studies consider the self-supervised learning on temporal graphs
in the general Riemannian space.
Riemannian Representation Learning. Recently, it emerges as
an exciting alternative to the traditional Euclidean representation
learning [8, 24, 26, 38] . In this subsection, we mainly focus on the
Riemannian representation learning on graphs. Most of the existing
studies in the literature investigate on the static graphs. A number
of hyperbolic GNNs are proposed, e.g., HAN [9] generalize the at-
tention mechanism. HGCN [4], HGNN [20] and LGNN [50] design
the hyperbolic graph convolution with different formulations. Fu
et al. [7] studies how to select the optimal curvature for hyperbolic
GNN in a joint optimization objective with a reinforcement learn-
ing method. Beyond the hyperbolic space, κ-GCN [2] generalizes
GCN to arbitrary constant-curvature spaces. Recently, Sun et al.
[37] propose to study graph learning in the mixed-curvature space,
and enable the self-supervised learning with a novel Riemannian
contrastive learning. It is not until very recently the Riemannian
representation learning for temporal graphs are explored. Con-
cretely, HVGNN [39] directly models the temporal interaction with
an attentional architecture, and in the meanwhile, HTGN [48] de-
signs a novel recurrent architecture on the sequence of snapshots.
However, both of them restrict themselves in the negative curva-
ture hyperbolic space. Distinguishing with the recent advances,
we propose the first time-varying curvature model shifting among
hyperspherical, Euclidean, and hyperbolic spaces in the evolvement.
6 CONCLUSION

In this paper, we for the first time study the representation learn-
ing problem on temporal graph in the general Riemannian space,
shifting among hyperspherical, Euclidean, and hyperbolic spaces
in the evolvement. To this end, we present the self-supervised Rie-
mannian graph neural network (SelfRGNN). In SelfRGNN, we
propose the curvature-varying Riemannian GNN with the theoreti-
cally grounded time encoding, so that we can design the functional
curvature to model the evolvement over time. In the absence of
external labels, we explore the rich information in the Riemannian
space itself. We propose the reweighting self-contrastive approach
for representation learning and the edge-based self-supervised cur-
vature learning with Ricci curvature. Extensive experiments on
real-world temporal graphs show the superiority of SelfRGNN.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Anonymous Author(s)

ACKNOWLEDGMENTS

This paper were supported by the Fundamental Research Funds
for the Central Universities, National Key R&D Program of China
through grant 2021YFB1714800, S&T Program of Hebei through
grant 21340301D. Philip S. Yu is supported in part by NSF under
grants III-1763325, III-1909323, III-2106758, and SaTC-1930941. For
any correspondence, please refer to Li Sun and Hao Peng.

REFERENCES

[1] Charu C. Aggarwal and Karthik Subbian. 2014. Evolutionary Network Analysis:
A Survey. ACM Comput. Surv. 47, 1 (2014), 10:1–10:36.

[2] Gregor Bachmann, Gary Bécigneul, and Octavian Ganea. 2020. Constant Curva-
ture Graph Convolutional Networks. In Proceedings of ICML, Vol. 119. 486–496.

[3] Ranran Bian, Yun Sing Koh, Gillian Dobbie, and Anna Divoli. 2019. Network
Embedding and Change Modeling in Dynamic Heterogeneous Networks. In
Proceedings of the 42nd ACM SIGIR. ACM, 861–864.

[4] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. 2019. Hyperbolic
graph convolutional neural networks. In Advances in NeurIPS. 4869–4880.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of ICML, Vol. 119. 1597–1607.

[6] Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. 2018. Dynamic
Network Embedding: An Extended Approach for Skip-gram based Network
Embedding. In Proceedings of JCAI. ijcai.org, 2086–2092.

[7] Xingcheng Fu, Jianxin Li, Jia Wu, Qingyun Sun, Cheng Ji, Senzhang Wang,
Jiajun Tan, Hao Peng, and Philip S. Yu. 2021. ACE-HGNN: Adaptive Curvature
Exploration Hyperbolic Graph Neural Network. In Proceedings of the 21st ICDM.
IEEE, 111–120.

[8] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. 2018. Hyperbolic neural
networks. In Advances in NeurIPS. 5345–5355.

[9] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu,
Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro,
and Nando de Freitas. 2019. Hyperbolic Attention Networks. In Proceedings of
ICLR.

[10] Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield, Krishna R Narayanan,
Mingyuan Zhou, and Xiaoning Qian. 2019. Variational Graph Recurrent Neural
Networks. In Advances in NeurIPS. 10700–10710.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in NeurIPS. 1024–1034.

[12] Kaveh Hassani and Amir Hosein Khas Ahmadi. 2020. Contrastive Multi-View
Representation Learning on Graphs. In Proceedings of ICML, Vol. 119. 4116–4126.

[13] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip
Bachman, Adam Trischler, and Yoshua Bengio. 2019. Learning deep representa-
tions by mutual information estimation and maximization. In Proceedings of the
7th ICLR. OpenReview.net, 1–24.

[14] Shantanu Jain, Martha White, and Predrag Radivojac. 2016. Estimating the class
prior and posterior from noisy positives and unlabeled data. In Advances in
NeurIPS. 2685–2693.

[15] Yugang Ji, Tianrui Jia, Yuan Fang, and Chuan Shi. 2021. Dynamic Heterogeneous
Graph Embedding via Heterogeneous Hawkes Process. In Proceedings of ECML-
PKDD (Lecture Notes in Computer Science), Vol. 12975. Springer, 388–403.

[16] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic
Graphs: A Survey. Journal Machine Learning Research (JMLR) 21 (2020), 70:1–
70:73.

[17] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In Proceedings of ICLR.

[18] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and
Marián Boguná. 2010. Hyperbolic geometry of complex networks. Physical
Review E 82, 3 (2010), 036106.

[19] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-
bedding Trajectory in Temporal Interaction Networks. In Proceedings of KDD.
1269–1278.

[20] Qi Liu, Maximilian Nickel, and Douwe Kiela. 2019. Hyperbolic graph neural
networks. In Advances in NeurIPS. 8228–8239.

[21] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, and
Jie Tang. 2021. Self-supervised Learning: Generative or Contrastive. IEEE Trans.
on Knowledge and Data Engineering (2021), 1–24.

[22] Zhijun Liu, Chao Huang, Yanwei Yu, and Junyu Dong. 2021. Motif-Preserving Dy-
namic Attributed Network Embedding. In Proceedings of the ACMWeb Conference
(WWW). ACM / IW3C2, 1629–1638.

[23] Zhining Liu, Dawei Zhou, Yada Zhu, Jinjie Gu, and Jingrui He. 2020. Towards
Fine-grained Temporal Network Representation via Time-Reinforced Random
Walk. In Proceedings of AAAI. 4973–4980.

[24] Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and YeeWhye
Teh. 2019. Continuous Hierarchical Representations with Poincaré Variational
Auto-Encoders. In Advances in NeurIPS. 12544–12555.

[25] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.
In Companion of the WWW(The Web Conference 2018). ACM, 969–976.

[26] Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings for learning
hierarchical representations. In Advances in NeurIPS. 6338–6347.

[27] Yann Ollivier. 2009. Ricci curvature of Markov chains on metric spaces. Journal
of Functional Analysis 256, 3 (2009), 810–864.

[28] Fragkiskos Papadopoulos, Maksim Kitsak, M Ángeles Serrano, Marián Boguná,
and Dmitri Krioukov. 2012. Popularity versus similarity in growing networks.
Nature 489, 7417 (2012), 537.

[29] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, and Charles E Leisersen. 2020. Evolvegcn: Evolving
graph convolutional networks for dynamic graphs. In Proceedings of AAAI.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of KDD. 701–710.

[31] Peter Petersen. 2006. Riemannian Geometry. Vol. 171. Springer.
[32] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. In Proceedings of KDD. 1150–1160.

[33] Erzsébet Ravasz and Albert-László Barabási. 2003. Hierarchical organization in
complex networks. Physical review E 67, 2 (2003), 026112.

[34] Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka.
2021. Contrastive Learning with Hard Negative Samples. In Proceedings of the
9th ICLR. OpenReview.net, 1–29.

[35] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael M. Bronstein. 2020. Temporal Graph Networks for Deep
Learning on Dynamic Graphs. CoRR arxiv.org/abs/2006.10637 (2020).

[36] Michael Spivak. 1979. A comprehensive introduction to differential geometry.
[37] Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, and Philip S.

Yu. 2022. A Self-Supervised Mixed-Curvature Graph Neural Network. In Proceed-
ings of AAAI. AAAI Press, 4146–4155.

[38] Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Yang Du, Sen Su, and
Philip S. Yu. 2020. Perfect: A Hyperbolic Embedding for Joint User and Commu-
nity Alignment. In Proceedings of the 20th ICDM. IEEE, 501–510.

[39] Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, and
Philip S. Yu. 2021. Hyperbolic Variational Graph Neural Network for Modeling
Dynamic Graphs. In Proceedings of AAAI. AAAI Press, 4375–4383.

[40] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of WWW.
1067–1077.

[41] Sheng Tian, Ruofan Wu, Leilei Shi, Liang Zhu, and Tao Xiong. 2021. Self-
supervised Representation Learning on Dynamic Graphs. In Proceedings of CIKM.
ACM, 1814–1823.

[42] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
DyRep: Learning Representations over Dynamic Graphs. In Proceedings of the
7th ICLR. OpenReview.net, 1–25.

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proceedings of ICLR.

[44] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2019. Deep Graph Infomax. In Proceedings of ICLR. 1–24.

[45] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In Proceedings of the 9th ICLR. OpenReview.net, 1–21.

[46] Zhihao Wen and Yuan Fang. 2022. TREND: TempoRal Event and Node Dynamics
for Graph Representation Learning. In Proceedings of the WWW (The ACM Web
Conference 2022). ACM, 1159–1169.

[47] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. In Proceedings of
ICLR.

[48] Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King.
2021. Discrete-time Temporal Network Embedding via Implicit Hierarchical
Learning in Hyperbolic Space. In Proceedings of KDD. ACM, 1975–1985.

[49] Ze Ye, Kin Sum Liu, Tengfei Ma, Jie Gao, and Chao Chen. 2020. Curvature Graph
Network. In Proceedings of the 8th ICLR. OpenReview.net, 1–15.

[50] Yiding Zhang, XiaoWang, Chuan Shi, Nian Liu, and Guojie Song. 2021. Lorentzian
Graph Convolutional Networks. In Proceedings of WWW. 1249–1261.

[51] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
network embedding by modeling triadic closure process. In Proceedings of AAAI.
571–578.

[52] Dingyuan Zhu, Peng Cui, Daixin Wang, and Wenwu Zhu. 2018. Deep variational
network embedding in Wasserstein space. In Proceedings of KDD. 2827–2836.

[53] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding temporal network via neighborhood formation. In Proceedings of
KDD. 2857–2866.

	Abstract
	1 Introduction
	2 Preliminaries and Problem
	2.1 Preliminaries
	2.2 Problem Formulation

	3 Methodology
	3.1 Curvature-varying Riemannian GNN
	3.2 Riemannian Self-supervised Learning

	4 Experiment
	4.1 Experimental Setups
	4.2 Overall Performance (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Case Study and Discussion (RQ3)

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

